Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(6): 2312-2334, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857351

RESUMO

Stem bending in trees induces flexure wood but its properties and development are poorly understood. Here, we investigated the effects of low-intensity multidirectional stem flexing on growth and wood properties of hybrid aspen, and on its transcriptomic and hormonal responses. Glasshouse-grown trees were either kept stationary or subjected to several daily shakes for 5 wk, after which the transcriptomes and hormones were analyzed in the cambial region and developing wood tissues, and the wood properties were analyzed by physical, chemical and microscopy techniques. Shaking increased primary and secondary growth and altered wood differentiation by stimulating gelatinous-fiber formation, reducing secondary wall thickness, changing matrix polysaccharides and increasing cellulose, G- and H-lignin contents, cell wall porosity and saccharification yields. Wood-forming tissues exhibited elevated jasmonate, polyamine, ethylene and brassinosteroids and reduced abscisic acid and gibberellin signaling. Transcriptional responses resembled those during tension wood formation but not opposite wood formation and revealed several thigmomorphogenesis-related genes as well as novel gene networks including FLA and XTH genes encoding plasma membrane-bound proteins. Low-intensity stem flexing stimulates growth and induces wood having improved biorefinery properties through molecular and hormonal pathways similar to thigmomorphogenesis in herbaceous plants and largely overlapping with the tension wood program of hardwoods.


Assuntos
Populus , Madeira , Poliaminas/análise , Poliaminas/metabolismo , Poliaminas/farmacologia , Celulose/metabolismo , Polissacarídeos/metabolismo , Populus/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 193(4): 2480-2497, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606259

RESUMO

Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as ß-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to ß-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Raízes de Plantas/metabolismo , Sacarose/metabolismo
3.
Nat Commun ; 14(1): 4288, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463905

RESUMO

Deciduous trees exhibit a spectacular phenomenon of autumn senescence driven by the seasonality of their growth environment, yet there is no consensus which external or internal cues trigger it. Senescence starts at different times in European aspen (Populus tremula L.) genotypes grown in same location. By integrating omics studies, we demonstrate that aspen genotypes utilize similar transcriptional cascades and metabolic cues to initiate senescence, but at different times during autumn. The timing of autumn senescence initiation appeared to be controlled by two consecutive "switches"; 1) first the environmental variation induced the rewiring of the transcriptional network, stress signalling pathways and metabolic perturbations and 2) the start of senescence process was defined by the ability of the genotype to activate and sustain stress tolerance mechanisms mediated by salicylic acid. We propose that salicylic acid represses the onset of leaf senescence in stressful natural conditions, rather than promoting it as often observed in annual plants.


Assuntos
Transdução de Sinais , Estações do Ano , Genótipo
4.
J Exp Bot ; 74(14): 4031-4049, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37004244

RESUMO

Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it was unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Retroalimentação , Arabidopsis/metabolismo , Peptídeos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Adv Sci (Weinh) ; 10(14): e2206409, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36935365

RESUMO

Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Plantas , Arabidopsis/fisiologia , Eletrônica , Bombas de Íon
6.
Curr Biol ; 33(6): 1019-1035.e8, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36796359

RESUMO

In Arabidopsis thaliana, local wounding and herbivore feeding provoke leaf-to-leaf propagating Ca2+ waves that are dependent on the activity of members of the glutamate receptor-like channels (GLRs). In systemic tissues, GLRs are needed to sustain the synthesis of jasmonic acid (JA) with the subsequent activation of JA-dependent signaling response required for the plant acclimation to the perceived stress. Even though the role of GLRs is well established, the mechanism through which they are activated remains unclear. Here, we report that in vivo, the amino-acid-dependent activation of the AtGLR3.3 channel and systemic responses require a functional ligand-binding domain. By combining imaging and genetics, we show that leaf mechanical injury, such as wounds and burns, as well as hypo-osmotic stress in root cells, induces the systemic apoplastic increase of L-glutamate (L-Glu), which is largely independent of AtGLR3.3 that is instead required for systemic cytosolic Ca2+ elevation. Moreover, by using a bioelectronic approach, we show that the local release of minute concentrations of L-Glu in the leaf lamina fails to induce any long-distance Ca2+ waves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Ácido Glutâmico , Pressão , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant Physiol ; 191(1): 479-495, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331332

RESUMO

To maximize reproductive success, flowering plants must correctly time entry and exit from the reproductive phase. While much is known about mechanisms that regulate initiation of flowering, end-of-flowering remains largely uncharacterized. End-of-flowering in Arabidopsis (Arabidopsis thaliana) consists of quasi-synchronous arrest of inflorescences, but it is unclear how arrest is correctly timed with respect to environmental stimuli and reproductive success. Here, we showed that Arabidopsis inflorescence arrest is a complex developmental phenomenon, which includes the arrest of the inflorescence meristem (IM), coupled with a separable "floral arrest" of all unopened floral primordia; these events occur well before visible inflorescence arrest. We showed that global inflorescence removal delays both IM and floral arrest, but that local fruit removal only delays floral arrest, emphasizing their separability. We tested whether cytokinin regulates inflorescence arrest, and found that cytokinin signaling dynamics mirror IM activity, while cytokinin treatment can delay both IM and floral arrest. We further showed that gain-of-function cytokinin receptor mutants can delay IM and floral arrest; conversely, loss-of-function mutants prevented the extension of flowering in response to inflorescence removal. Collectively, our data suggest that the dilution of cytokinin among an increasing number of sink organs leads to end-of-flowering in Arabidopsis by triggering IM and floral arrest.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Inflorescência/genética , Inflorescência/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Meristema/genética , Meristema/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo
8.
Front Plant Sci ; 13: 1009895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325553

RESUMO

ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.

9.
Commun Biol ; 5(1): 1043, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180574

RESUMO

The 26S proteasome is a conserved multi-subunit machinery in eukaryotes. It selectively degrades ubiquitinated proteins, which in turn provides an efficient molecular mechanism to regulate numerous cellular functions and developmental processes. Here, we studied a new loss-of-function allele of RPN12a, a plant ortholog of the yeast and human structural component of the 19S proteasome RPN12. Combining a set of biochemical and molecular approaches, we confirmed that a rpn12a knock-out had exacerbated 20S and impaired 26S activities. The altered proteasomal activity led to a pleiotropic phenotype affecting both the vegetative growth and reproductive phase of the plant, including a striking repression of leaf senescence associate cell-death. Further investigation demonstrated that RPN12a is involved in the regulation of several conjugates associated with the auxin, cytokinin, ethylene and jasmonic acid homeostasis. Such enhanced aptitude of plant cells for survival in rpn12a contrasts with reports on animals, where 26S proteasome mutants generally show an accelerated cell death phenotype.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Animais , Citocininas , Etilenos , Homeostase , Humanos , Ácidos Indolacéticos , Senescência Vegetal , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ubiquitinadas
10.
Nat Commun ; 13(1): 2976, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624089

RESUMO

Parasitic plants are globally prevalent pathogens that withdraw nutrients from their host plants using an organ known as the haustorium. The external environment including nutrient availability affects the extent of parasitism and to understand this phenomenon, we investigated the role of nutrients and found that nitrogen is sufficient to repress haustoria formation in the root parasite Phtheirospermum japonicum. Nitrogen increases levels of abscisic acid (ABA) in P. japonicum and prevents the activation of hundreds of genes including cell cycle and xylem development genes. Blocking ABA signaling overcomes nitrogen's inhibitory effects indicating that nitrogen represses haustoria formation by increasing ABA. The effect of nitrogen appears more widespread since nitrogen also inhibits haustoria in the obligate root parasite Striga hermonthica. Together, our data show that nitrogen acts as a haustoria repressing factor and suggests a mechanism whereby parasitic plants use nitrogen availability in the external environment to regulate the extent of parasitism.


Assuntos
Orobanchaceae , Parasitos , Ácido Abscísico/metabolismo , Animais , Nitrogênio/metabolismo , Orobanchaceae/genética , Raízes de Plantas/metabolismo , Plantas/parasitologia
11.
New Phytol ; 235(1): 263-275, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322877

RESUMO

Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Salinidade , Água/metabolismo
12.
Curr Biol ; 32(8): 1798-1811.e8, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35316655

RESUMO

Pollen grains become increasingly independent of the mother plant as they reach maturity through poorly understood developmental programs. We report that the hormone auxin is essential during barley pollen maturation to boost the expression of genes encoding almost every step of heterotrophic energy production pathways. Accordingly, auxin is necessary for the flux of sucrose and hexoses into glycolysis and to increase the levels of pyruvate and two tricarboxylic (TCA) cycle metabolites (citrate and succinate). Moreover, bioactive auxin is synthesized by the pollen-localized enzyme HvYUCCA4, supporting that pollen grains autonomously produce auxin to stimulate a specific cellular output, energy generation, that fuels maturation processes such as starch accumulation. Our results demonstrate that auxin can shift central carbon metabolism to drive plant cell development, which suggests a direct mechanism for auxin's ability to promote growth and differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Ácidos Indolacéticos/metabolismo , Pólen/genética , Pólen/metabolismo
13.
Plant Physiol ; 188(2): 1043-1060, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34633458

RESUMO

In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transporte de Íons/genética
14.
New Phytol ; 232(2): 642-654, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289137

RESUMO

The levels of the important plant growth regulator indole-3-acetic acid (IAA) are tightly controlled within plant tissues to spatiotemporally orchestrate concentration gradients that drive plant growth and development. Metabolic inactivation of bioactive IAA is known to participate in the modulation of IAA maxima and minima. IAA can be irreversibly inactivated by oxidation and conjugation to aspartate and glutamate. Usually overlooked because of its reversible nature, the most abundant inactive IAA form is the IAA-glucose (IAA-glc) conjugate. Glycosylation of IAA in Arabidopsis thaliana is reported to be carried out by UDP-glycosyltransferase 84B1 (UGT84B1), while UGT74D1 has been implicated in the glycosylation of the irreversibly formed IAA catabolite oxIAA. Here we demonstrated that both UGT84B1 and UGT74D1 modulate IAA levels throughout plant development by dual IAA and oxIAA glycosylation. Moreover, we identified a novel UGT subfamily whose members redundantly mediate the glycosylation of oxIAA and modulate skotomorphogenic growth.


Assuntos
Proteínas de Arabidopsis , Glicosiltransferases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Homeostase , Ácidos Indolacéticos , Desenvolvimento Vegetal , Difosfato de Uridina
15.
Plant J ; 106(1): 159-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421204

RESUMO

The phytohormone cytokinin plays a significant role in nearly all aspects of plant growth and development. Cytokinin signaling has primarily been studied in the dicot model Arabidopsis, with relatively little work done in monocots, which include rice (Oryza sativa) and other cereals of agronomic importance. The cytokinin signaling pathway is a phosphorelay comprised of the histidine kinase receptors, the authentic histidine phosphotransfer proteins (AHPs) and type-B response regulators (RRs). Two negative regulators of cytokinin signaling have been identified: the type-A RRs, which are cytokinin primary response genes, and the pseudo histidine phosphotransfer proteins (PHPs), which lack the His residue required for phosphorelay. Here, we describe the role of the rice PHP genes. Phylogenic analysis indicates that the PHPs are generally first found in the genomes of gymnosperms and that they arose independently in monocots and dicots. Consistent with this, the three rice PHPs fail to complement an Arabidopsis php mutant (aphp1/ahp6). Disruption of the three rice PHPs results in a molecular phenotype consistent with these elements acting as negative regulators of cytokinin signaling, including the induction of a number of type-A RR and cytokinin oxidase genes. The triple php mutant affects multiple aspects of rice growth and development, including shoot morphology, panicle architecture, and seed fill. In contrast to Arabidopsis, disruption of the rice PHPs does not affect root vascular patterning, suggesting that while many aspects of key signaling networks are conserved between monocots and dicots, the roles of at least some cytokinin signaling elements are distinct.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética
16.
New Phytol ; 229(2): 845-860, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901452

RESUMO

The plant hormone auxin is a key factor for regulation of plant development, and this function was probably reinforced during the evolution of early land plants. We have extended the available toolbox to allow detailed studies of how auxin biosynthesis and responses are regulated in moss reproductive organs, their stem cells and gametes to better elucidate the function of auxin in the morphogenesis of early land plants. We measured auxin metabolites and identified IPyA (indole-3-pyruvic acid) as the main biosynthesis pathway in Physcomitrium (Physcomitrella) patens and established knock-out, overexpressor and reporter lines for biosynthesis genes which were analyzed alongside previously reported auxin-sensing and transport reporters. Vegetative and reproductive apical stem cells synthesize auxin. Sustained stem cell activity depends on an inability to sense the auxin produced while progeny of the stem cells respond to the auxin, aiding in the control of cell division, expansion and differentiation. Gamete precursors are dependent on a certain degree of auxin sensing, while the final differentiation is a low auxin-sensing process. Tha data presented indicate that low auxin activity may represent a conserved hallmark of land plant gametes, and that local auxin biosynthesis in apical stem cells may be part of an ancestral mechanism to control focal growth.


Assuntos
Briófitas , Bryopsida , Bryopsida/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Células-Tronco
17.
Development ; 147(24)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33144393

RESUMO

Temperature is one of the most impactful environmental factors to which plants adjust their growth and development. Although the regulation of temperature signaling has been extensively investigated for the aerial part of plants, much less is known and understood about how roots sense and modulate their growth in response to fluctuating temperatures. Here, we found that shoot and root growth responses to high ambient temperature are coordinated during early seedling development in Arabidopsis A shoot signaling module that includes HY5, the phytochromes and the PIFs exerts a central function in coupling these growth responses and maintaining auxin levels in the root. In addition to the HY5/PIF-dependent shoot module, a regulatory axis composed of auxin biosynthesis and auxin perception factors controls root responses to high ambient temperature. Taken together, our findings show that shoot and root developmental responses to temperature are tightly coupled during thermomorphogenesis and suggest that roots integrate energy signals with local hormonal inputs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Morfogênese/genética , Organogênese Vegetal/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Transdução de Sinais
18.
Curr Biol ; 30(19): 3880-3888.e5, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795439

RESUMO

Morphological variation is the basis of natural diversity and adaptation. For example, angiosperms (flowering plants) evolved during the Cretaceous period more than 100 mya and quickly colonized terrestrial habitats [1]. A major reason for their astonishing success was the formation of fruits, which exist in a myriad of different shapes and sizes [2]. Evolution of organ shape is fueled by variation in expression patterns of regulatory genes causing changes in anisotropic cell expansion and division patterns [3-5]. However, the molecular mechanisms that alter the polarity of growth to generate novel shapes are largely unknown. The heart-shaped fruits produced by members of the Capsella genus comprise an anatomical novelty, making it particularly well suited for studies on morphological diversification [6-8]. Here, we show that post-translational modification of regulatory proteins provides a critical step in organ-shape formation. Our data reveal that the SUMO protease, HEARTBREAK (HTB), from Capsella rubella controls the activity of the key regulator of fruit development, INDEHISCENT (CrIND in C. rubella), via de-SUMOylation. This post-translational modification initiates a transduction pathway required to ensure precisely localized auxin biosynthesis, thereby facilitating anisotropic cell expansion to ultimately form the heart-shaped Capsella fruit. Therefore, although variation in the expression of key regulatory genes is known to be a primary driver in morphological evolution, our work demonstrates how other processes-such as post-translational modification of one such regulator-affects organ morphology.


Assuntos
Capsella/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Adaptação Fisiológica/genética , Anisotropia , Proteínas de Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Capsella/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Expressão Gênica/genética , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
19.
Nat Plants ; 6(6): 699-707, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451444

RESUMO

A well-defined set of regulatory pathways control entry into the reproductive phase in flowering plants, but little is known about the mechanistic control of the end-of-flowering despite this being a critical process for optimization of fruit and seed production. Complete fruit removal, or lack of fertile fruit-set, prevents timely inflorescence arrest in Arabidopsis, leading to a previous proposal that a cumulative fruit/seed-derived signal causes simultaneous 'global proliferative arrest'. Recent studies have suggested that inflorescence arrest involves gene expression changes in the inflorescence meristem that are, at least in part, controlled by the FRUITFULL-APETALA2 pathway; however, there is limited understanding of how this process is coordinated at the whole-plant level. Here, we provide a framework for the communication previously inferred in the global proliferative arrest model. We show that the end-of-flowering in Arabidopsis is not 'global' and does not occur synchronously between branches, but rather that the arrest of each inflorescence is a local process, driven by auxin export from fruit proximal to the inflorescence apex. Furthermore, we show that inflorescences are competent for arrest only once they reach a certain developmental age. Understanding the regulation of inflorescence arrest will be of major importance to extending and maximizing crop yields.


Assuntos
Arabidopsis/metabolismo , Frutas/metabolismo , Ácidos Indolacéticos/metabolismo , Inflorescência/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Inflorescência/metabolismo
20.
New Phytol ; 226(6): 1753-1765, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004385

RESUMO

Dynamic regulation of the concentration of the natural auxin (IAA) is essential to coordinate most of the physiological and developmental processes and responses to environmental changes. Oxidation of IAA is a major pathway to control auxin concentrations in angiosperms and, along with IAA conjugation, to respond to perturbation of IAA homeostasis. However, these regulatory mechanisms remain poorly investigated in conifers. To reduce this knowledge gap, we investigated the different contributions of the IAA inactivation pathways in conifers. MS-based quantification of IAA metabolites under steady-state conditions and after perturbation was investigated to evaluate IAA homeostasis in conifers. Putative Picea abies GH3 genes (PaGH3) were identified based on a comprehensive phylogenetic analysis including angiosperms and basal land plants. Auxin-inducible PaGH3 genes were identified by expression analysis and their IAA-conjugating activity was explored. Compared to Arabidopsis, oxidative and conjugative pathways differentially contribute to reduce IAA concentrations in conifers. We demonstrated that the oxidation pathway plays a marginal role in controlling IAA homeostasis in spruce. By contrast, an excess of IAA rapidly activates GH3-mediated irreversible conjugation pathways. Taken together, these data indicate that a diversification of IAA inactivation mechanisms evolved specifically in conifers.


Assuntos
Ácidos Indolacéticos , Traqueófitas , Regulação da Expressão Gênica de Plantas , Homeostase , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...